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Abstract—An upcoming frontier for distributed computing
might literally save lives in future military operations. In civilian
scenarios, significant efficiencies were gained from intercon-
necting devices into networked services and applications that
automate much of everyday life from smart homes to intelligent
transportation. The ecosystem of such applications and services
is collectively called the Internet of Things (IoT). Can similar
benefits be gained in a military context by developing an IoT for
the battlefield? This paper describes unique challenges in such
a context as well as potential risks, mitigation strategies, and
benefits.

I. INTRODUCTION

Can distributed computing reduce the human and economic
toll of military operations? A recent US study estimates the
total cost of military operations, since the beginning of the
millennium, at 4.79 trillion,1 or about $15,000 per person in
the US, making it one of the largest expenses for the nation.
While much of that cost, as the title suggests, is attributed
to armed conflicts, in this paper we draw examples from the
entire gamut of military operations, including such missions
as non-combatant evacuations, peacekeeping operations, and
humanitarian missions (e.g., disaster response).

From a computational perspective, reducing the human cost
of military operations, expressed in such factors as injuries
and loss of life, can be attained by a form of automation that
reduces collateral damage (e.g., via smarter sensing, control
and actuation) and decreases the need for physical presence
of individuals in risky environments.

Similarly, reducing the economic cost can be attained,
among other means, by improved early response. For example,
an earlier and better-informed response to a humanitarian
need (such as the recent post-hurricane crisis in Puerto Rico)
would generally lead to a lower long-term operation cost. This
improved response is often referred to as readiness.

Since most world population lives in cities (according to
recent studies that show urban populations tipping the balance
since 2008), we further envision military operations that are

1https://www.usnews.com/news/articles/2016-09-09/report-post-sept-11-
wars-have-cost-479-trillion

increasingly carried out in urban contexts. This environment
further exacerbates the challenges of reducing human and
economic cost.

The question to the research community that we focus
on in this paper therefore becomes: what research advances
can simultaneously meet the aforementioned two intertwined
requirements; namely, (i) increase the level of automation
and (ii) improve response (or readiness) in military operation
scenarios, especially ones carried out in urban spaces? At
a high level, the two requirements may appear to be in
conflict. Delivering a faster and more appropriate response
to unexpected conditions calls for improved human decision-
making, whereas automation aims to remove humans from
the loop. How can one advance both simultaneously? This
paper explains how distributed computing solutions can be a
significant part of the answer, thereby contributing to one of
the most impactful research directions in computing in the next
decade, both in terms of humanitarian and economic benefits.

In order to simultaneously meet the requirements of in-
creased automation and readiness, this paper describes future
networks of battlefield things that can recognize, empower, and
properly carry out commander’s intent in a safe, responsive,
and resilient manner. These networks execute battlefield ser-
vices that aim to meet mission requirements in unpredictable,
fast-changing, distributed adversarial environments. An in-
vestigation into the analytical foundations of the Internet of
Battlefield Things (IoBT) has recently started under a new US
Army research program by the same name.2 Below, we offer
a perspective on the underlying challenges, risks, mitigation
solutions, and prospective impact.

The simultaneous need for increasing automation and im-
proving response has significant implications on computing
challenges. Intuitively, a faster response requires a shorter
decision loop. Consider, for example, a non-combatant evacu-
ation operation, where civilians must be safely removed from
a zone of increased or impending hostility. The situation
is highly dynamic. New information updates arrive in real-

2https://www.eurekalert.org/pub releases/2017-10/uarl-bit100417.php



time regarding the situation in affected locales. This arriving
information may impact decisions such as evacuation routes
and deployment plans for protection forces. One needs to
optimize the ability of decision-makers to arrive at faster
better-informed decisions.

In military contexts, decisions are hierarchical. The hier-
archical nature of decisions reduces the speed of response
as authorizations to carry out actions must arrive through
an appropriate chain of command. As a result, actions are
delayed and, by the time they are carried out, might already be
based on stale information. A recent departure from the strict
hierarchical structure in military thinking was the adoption
of a command by intent doctrine; a paradigm that empowers
subordinate units to exercise more initiative and autonomy in
the context of a mission, without waiting for explicit directives
from upper echelons. In this paradigm, a commander specifies
their intent (such as evacuating non-combatants along safe
routes), leaving it largely to the subordinate units to fill-in
the details. The paradigm shortens the decision loop, enabling
better local exploitation of fleeting opportunities, as well as
improving decisions by acting faster (and, hence, on more up-
to-date data).

The original command by intent doctrine largely envisions
humans as the mission execution agents. When combined with
the need for increasing automation, arising from the desire
to reduce human cost, exercising autonomy and initiative
becomes more challenging. How can teams of distributed
machines and humans execute command by intent? Indeed,
how does one manage increasingly autonomous smart assets
in ways that allow them to improvise and exhibit initiative
to meet mission needs, while offering some assurances on
aggregate behavior, and while reacting and re-configuring
around disruptions and failures at different scales caused by
a harsh environment or a determined adversary? We note that
the above is a core computer science problem.

In the rest of this paper, we elaborate what we mean by
IoBT and break down the above problem into more specific
research directions in distributed computing.

II. IOBT CHALLENGES

A recent US Army vision3 defines IoBT as a set of
interdependent and interconnected entities that can include
sensors, actuators, devices (computers, weapons, vehicles,
robots, human-wearables, etc), infrastructure (networks, stor-
age, processing elements), algorithms (on-node, in-network),
information sources, and humans. These entities (i) are dy-
namically composed to meet multiple missions, tasks, or
goals; (ii) operate autonomously and autonomically; and (iii)
perform intelligent battlefield services (such as capture/process
data, predict behaviors/activities, and effectuate the physical
environment) in order to enable predictive analytics and deliver
intelligent command and control.

3https://www.arl.army.mil/www/pages/3050/IOBT-Program-
Announcement-AmendmentII.pdf

The application domain has challenging characteristics that
collectively distinguish battlefield IoT from civilian scenarios.
These characteristics include:

• Diverse missions, tasks, and goals. An IoBT might be
specifically created and adapted to meet a mission, com-
plete a task, or accomplish a goal. There will likely
be many networks operating simultaneously, possibly
competing for resources. The possible tasks are diverse.
They include wide area persistent surveillance, tracking a
dispersed group of humans and vehicles moving through
cluttered environments, monitoring cities for protests,
disaster relief operations, or monitoring physiological and
psychological state of soldiers, to name a few. Tasks are
not expected to start or end simultaneously, and new tasks
may emerge as others are being executed.

• Highly dynamic, mobile, and resource-constrained envi-
ronment. Many networks will be forward-deployed and
will consist of disadvantaged assets with limitations on
energy, power, storage, and bandwidth. Fixed infrastruc-
ture may not be available, posing limits on computing,
and communications. Services delivered on the IoBT
must operate under these severe constraints and will often
need to support tasks with limited time availability.

• Extreme heterogeneity. The variety of things available
to an IoBT is immense, ranging from very capable
devices and simple disposable ones. In addition to the
various classes of things described above, a network will
contain a mixture of entities that include military devices
controlled by the military (which we henceforth call blue
assets), adversarial devices (which we call red), and de-
vices controlled by neutral entities (which we call gray).
Co-existence and co-deployment of commercial Internet
of Things (IoT) devices and networks with purposefully
built, certified, and carefully controlled military devices
and networks will be required. Networked entities will
thus have a wide range of security levels and capabilities
that must be accommodated.

• Varying scale. IoBTs will be deployed in a wide variety
of places and domains, usually in contested environments.
One extreme is the highly dense and cluttered mega-
city environment. Another extreme is sparse terrain with
limited entities and gaps in sensor coverage and networks.

• Contested and adversarial environments. Many IoBTs
will be deployed with limited physical security and will
include entities in the IoBT that are owned and controlled
by the adversary. IoBT must be protected from a variety
of sophisticated and persistent threats. Security measures
must be taken to protect against determined intelligent
adversaries. Analytics must deal with conflicting and
deceptive data, and identify adversarial activity.

Within the above context, we divide the envisioned high-level
IoBT functions into three key types: (i) synthesis (of desired
capabilities), (ii) adaptive/resilient execution, and (iii) learning.
We further define these capabilities as follows:

• Assured synthesis: In response to a need, how can one



Fig. 1. An Internet of Battlefield Things

quickly synthesize a capability that meets the need?
What assurances can be made about the behavior of
the synthesized capability? Such an assured synthesis
capability contributes to readiness by improving the speed
and efficacy of response to unexpected conditions.

• Adaptive/resilient execution: Once synthesized, how can
one quickly adapt and reconfigure capabilities in response
to a disruption, threat or loss? How does one adapt to
the environment in order to optimize success metrics?
Akin to instinctual reflexes, this fast adaptation capability
is needed to handle sudden disturbances, setbacks and
opportunities, while executing a mission.

• Learning: How does one manage and support intelligent
and learning battlefield services that accumulate knowl-
edge, learn from experience, and continually improve
outcomes against determined adversaries?

Furthermore, security is a crosscutting concern. One must
ensure that all of the above is safe and secure, even in
the presence of malfunction, infiltration, and partial loss of
resources. The interactions among the above capabilities in an
IoBT context are depicted in Figure 1.

III. CHALLENGE 1: ASSURED SYNTHESIS

Future missions will exploit IoBTs made of thousands or tens
of thousands of blue/military, red/adversary, and gray/citizen
nodes, with a wide range of capabilities (Figure 2): from tiny
occupancy sensors to drones with three-dimensional Radar
and LiDar sensors; from small on-board compute devices
to powerful edge clouds with GPUs; and from actuators
capable of modifying the environment in some way, to humans
with powerful (albeit biased) perception, cognition, and action
capabilities. Furthermore, future missions will need to be
exceedingly agile: mission goals and needs may not be known
until just before mission execution, and mission planners may
not be able to (without the aid of automated tools) recruit and

construct, at short timescales, IoBTs with sufficient resources
to satisfy mission needs. The large scale of IoBTs implies
continuous churn, so discovery and composition solutions will
need to be robust to failure or removal of assets as a normal
operating regime.

A research challenge is therefore to develop methods and
fundamental limits underlying the recruitment and compo-
sition of IoBT resources, including potentially adversarial
ones, into composite assets with sufficient sensing, compute,
and communication capacities to satisfy mission needs and
constraints. Recruitment, composition and reconfiguration of
such assets must meet two fundamental needs. First, it should
be possible to assemble (or re-assemble, for example, upon
damage) composite assets comprising an IoBT of possibly
1,000s to 10,000s of nodes on demand and within an ap-
propriately short time (e.g., minutes, if needed), despite high
component heterogeneity, large scale, and presence of ad-
versaries. Second, the aggregate properties of the composite,
including timeliness, performance/functionality, security, and
dependability, must be formally assured in an appropriately
quantifiable and operationally relevant manner, subject to well-
understood assumptions. Several important scientific advances
can contribute to the solution space. For example:

• Algorithms for discovery of gray/red nodes using side
channel emanations.

• Algorithms and mathematical foundations for rapid top-
down synthesis of mission-specific IoBT functions, of-
fering composable assurances of correctness and com-
posable assessments of risk.

• Algorithms and theory for exploitation of physical dy-
namics of sensor observations to enable secure and re-
silient state-estimation and control in the face of data
contamination.

• An understanding of fundamental information-transfer
and capability limits of composite IoBTs.



Fig. 2. Synthesis of Large-scale Composite IoBTs

Below we detail some of the above ideas. The goal is to
enable not only efficient composition of assets that meet mis-
sion needs, but also improved quantification of risk, brought
about by a better understanding of assurances guaranteed by
such composite assets. Hence, disciplined initiative may be
exercised in mission execution (as opposed to poorly-informed
“gambling”).

A. Recruitment

One must develop methods to discover assets (sensors, ac-
tuators, and humans), characterize their capabilities to meet
mission goals (and/or their potential threats, in case of gray/red
nodes), and recruit the appropriate assets into an IoBT. Ca-
pabilities of assets include properties such as performance,
reliability, trust and security. We envision two qualitatively
different research threads in this context: discovery and char-
acterization of cyberphysical assets, and discovery and char-
acterization of human assets. A critical challenge underlying
both of these threads is the resilience of discovery and char-
acterization to adversarial behavior.

Cyberphysical assets: While discovery and characterization of
fixed wired assets has made impressive strides, algorithms and
limits of the discoverability and characterizability of cyber-
physical, mobile, and wireless assets at large scale remains less
well-studied. Cyberphysical assets can potentially be discov-
ered through cyber-discovery techniques (probing, snooping,
fingerprinting based on unique traffic characteristics), but this
alone is insufficient, since these devices have qualitatively
different characteristics from wired devices: they may be inter-
mittently connected, so may not consistently respond to probes
or emit traffic; they have several connectivity options (cellular,
Wifi, Bluetooth), so may not appear at consistent topological
locations and may not be amenable to fingerprinting based on
traffic characteristics; they contain a variety of sensors whose
characterization is crucial for IoBT missions; and they may
move frequently, so their discovery needs to be continuous.
The above difficulties make cyberphysical asset discovery and
characterization an interesting research problem.

Human assets: Recent research created theory-driven frame-
works for human-in-the-loop sensing, we call social sens-
ing [1], [2]. Social sensing offers estimation-theoretic and
system identification-based approaches to characterize human
sources. Properties of interest include human reliability and
bias. Theoretical models and effective and scalable algorithms
were developed that automatically discover ground-truth from
possibly noisy, biased, linguistically ambiguous, and conflict-
ing claims provided by various information sources [3], [4].
Fact-finding algorithms were developed to characterize relia-
bility of sources on social media (e.g., bloggers on Twitter)
and compute confidence in results [2]. These approaches need
to be extended to offer a foundation for identifying and char-
acterizing human components that work in various capacities
within an IoBT. Humans (for example, members of the local
population in a city) can collectively offer sensing, actuation,
or control in an IoBT context making it important to properly
model and account for their behavior. A related important issue
is the discovery of resources (e.g., sensing, computational,
and actuation resources) available to such humans that can
be leveraged for asset composition.

Resilience to adversarial behavior: Adversarial nodes (either
humans or cyberphysical assets) may contaminate data, dis-
rupt discovery and characterization, or perform impersonation
attacks. New methodologies must be developed for robust
asset discovery and characterization in highly dynamic and
unknown environments.

B. Composition

Given a high-level description of a mission’s goal, one must
automatically synthesize a composite asset comprising (a) an
IoBT network, and (b) associated distributed software services
that can, together, satisfy the missions needs.

This capability requires addressing at least three challenges:
(i) automatic reasoning from goals to means to derive re-
quirements and constraints from high-level goal specifications,
(ii) network composition that satisfies the requirements and
constraints, and (iii) functional composition for generating



distributed services and controllers that achieve the mission
goals in a scalable manner.

Reasoning from goals to means: First, given a high-level goal
such as “track a collection of insurgents and report on their
activities and rendezvous points within a certain geographic
area”, one must address such questions as: what sensors and
actuators are needed to achieve the goals, what in-network
compute elements must be present to achieve the desired
latency, and what network capacity and resilience must ex-
ist to fulfil mission information extraction needs? Efficient
analytically-founded approaches must be developed to reason
about functional requirements. The ability for such on-the-
spot fast composition or improvisation of highly-customized
capabilities to mission goals brings about the next degree
of agility and adaptation to military operations in contested
environments. Prior work on macroprogramming [5]–[7] and
network service composition [8], [9] offers instances of
deriving functional behavior from high-level specifications.
Top-down IoBT synthesis requires generating the network
topology, dealing with adversarial elements, and reasoning
about computation capabilities for information processing and
machine learning.

Scalability: Given a set of network capacity, computation, la-
tency and resilience requirements, one must synthesize a near-
optimal network meeting those requirements from discovered
IoBT assets. Formalisms must be developed to address this
problem, such as constraint satisfaction [10], and optimization-
theoretic approaches [11]. Essentially, these approaches search
discovered IoBT nodes to determine subsets that optimally
satisfy the requirements (under some optimization objective
such as using fewest discovered nodes, or fewest adversarial
assets, etc). However, the potential search space is very large
because of the heterogeneity of sensors, actuators and compute
elements. Thus, clever solutions must be developed to address
tractability. They may include a judicious choice of constraints
to reduce search space, or perhaps a hiearchical problem
decomposition that exploits independence relations between
subproblems.

A key challenge in composition lies in understanding fun-
damental constraints brought about by time and bandwidth
limitations on information transfer among the composed com-
ponents, as well as optimizing information transfer subject to
these constraints.

IV. CHALLENGE 2: ADAPTIVE REFLEXES FOR IOBTS

The next challenge is to develop theoretical foundations,
models, and methods for autonomy, autonomicity, and self-
awareness of composite IoBT assets, such as those synthesized
as described above. In biological systems, reflex theory states
that complex behavior can be attained (and thus explained)
through the combined action of individual reflexes that have
been chained together. Can one develop a parallel theory
for IoBTs that offers foundations, models, and methods for
autonomous, autonomic, and (more generally) self-aware be-
havior in the face of distribution, scale, dynamics, hetero-

geneity, resource constraints, and presence of adversaries? The
following key scientific advances are needed:

• A unifying theory of self-aware adaptation inspired by
multidisciplinary foundations borrowing from technical
areas such as self-stabilizing algorithms, information the-
ory, and adaptive control.

• Game theoretic foundations for hierarchical decomposi-
tion of global goals into objectives for distributed subor-
dinate subsystems that jointly achieve the overall goal.

• Quantifiable assessment metrics for self-aware and self-
adaptive systems.

In the long term, the area develops the foundations for exercis-
ing disciplined initiative while carrying out mission orders. It
does so by decomposing high-level mission goals into specific
objectives for subsystems, while allowing for local adaptation
at the subsystem level that nevertheless ensures quantifiable
compliance, in aggregate, with mission goals. The resulting
system architecture is depicted in Figure 3.

A. Foundations for Self-aware Adaptation

An exciting and intellectually stimulating undertaking is to
develop a unified theory of adaptation in self-aware systems.
These foundations can gain inspiration from understanding
adaptive behaviors traditionally studied across multiple disci-
plines, and putting them under the same analytic foundation.
Importantly, the unified treatment should allow investigation
of aggregate behavior when individual, largely heterogeneous,
adaptive components interact (whose adaptation algorithms,
today, are studied in different non-interacting disciplines). This
would be the case, at scale, in the heterogeneous and dynamic
environment of IoBTs. Of particular interest is the situation
where some of the adaptive components are malicious, aiming
to derail the aggregate converged behavior of the compos-
ite. Prior work has shown that uncoordinated interactions of
adaptive components, even when aimed at meeting the same
goal, can result in unexpected consequences and severe per-
formance loss [12]. This challenge of mitigating undesirable
collective behaviors of heterogeneous adaptive systems was
recently emphasized in the outcomes of a Dagstuhl Seminar
on Self-aware Computing as one of the key challenges for
the field [13]. Indeed, although elements of self-* properties
pervade the most diverse areas of engineering (and special
instances are studied in a stove-piped fashion in different
disciplines), there is currently no unifying theory of self-
aware adaptation applicable to the heterogeneous environments
of IoBTs. An important challenge would be to build such
a theory, together with appropriate assessment metrics, as
one key foundation of self-awareness, thereby empowering
distributed components to adapt in coordinated ways that
respond to local stimuli (such as failures) while meeting global
requirements on behavior of the collective.

Multi-disciplinary foundations: Individual examples of adap-
tation in distributed and centralized systems are plentiful.
For example, self-stabilizing algorithms adapt to maintain an
invariant by triggering corrective action, when the invariant is



Fig. 3. Adaptive, Self-aware IoBTs.

violated, to cause the system to satisfy the invariant again.
Similarly, in error correction codes, a notion of goal can
be understood as (avoidance of) constraints imposed in the
codewords (e.g., all the codewords must have an even number
of ones). If these constraints are violated, a decoder is able to
correctly decode the message by re-enforcing the constraints
imposed by the code. We can thus see error correction as
a form of adaptation upon the occurrence of a mismatch
between the received message state and the goal. As the last
example, consider adaptive control, where the notion of goal
is expressed in a desired state of the physical system being
controlled. During execution, the sensed data and actuation
commands are constantly checked for consistency of model-
based predictions, as well as against the control goal. In case
of mismatch, the model is adapted to better agree with the
data, and new control commands are issued accordingly, to
better achieve the goal. Here, adaptation lies in revising both
the plant model and control command.

While the previous examples are from different scientific
disciplines (distributed computation, information theory, and
control, respectively), use different mathematical tools, and
offer different self-* properties, they all implicitly share the
notion of self that encapsulates state, models, actions, and
goals, and that adapts its actions and models as needed, such
that its goals are met. Can this simple principle serve as the
cornerstone of a new unifying theory of self-aware adaptation,
addressing the challenges brought by IoBTs, including massive
heterogeneity and scale, operation in contested environments,
and seamless interaction between humans and machines? How
does one incorporate security as a native part of this theory?
Armed with a capability for self-aware adaptation, one may
enable construction of IoBTs that use mission orders and
exercise initiative to adapt locally while ensuring invariants
in line with commander’s intent.

Operationalizing agent interactions: Another important ques-
tion is: how to design distributed coordination and control
mechanisms governing the interactions between agents starting
with the desired objectives and ending with the specific

interaction mechanisms? A possible answer might leverage
game-theoretic advances in the design of multi-level dynamic
games that offer provable convergence guarantees on the end
result. Namely, by suitably choosing agent objective functions,
one may be able to guarantee that the interactions between
the multiple agents in the battlefield will converge to an
equilibrium in which the desired objectives are met. The
necessary distributed coordination and control between agents
do not need to be explicitly designed, but rather naturally result
from each agent seeking to optimize its given objective func-
tion. This approach is an analytic embodiment of command
by intent, carried out by machines. Namely, objectives (i.e.,
objective functions) are given to subordinates, while granting
them the freedom to exercise initiative on how best to meet
these objectives. The analytic framework for designing such
objectives would allow devices in an IoBT to follow the
same doctrine. The process of optimizing the local objective
function of an agent can be seen as the operational counterpart
of self-aware adaptation, since the objective function encodes
the notion of self and how it relates to the agent’s objectives,
actions, and models. The approach is scalable because each
agent is empowered to perform the operations needed to
optimize its objective function without explicit coordination
with other agents, thereby minimizing overhead.

B. Adaptive Perception, Computation, and Actuation

To offer concrete degrees of freedom expressed in “adap-
tation knobs”, one should also develop a suite of adaptation
algorithms for distributed systems in response to mission re-
quests, for example, by reconfiguring (i.e., moving) or rebind-
ing to different sets of physical resources and computational
algorithms in response to changing context.

Adapting perception resources: Key to adapting perception
resources is the existence of some form of redundancy (i.e.,
ability to perform functions in several alternative ways). While
discovering redundancies in processing capabilities of network
nodes is relatively easy, the same is not true for sensing and
actuation capabilities, which depend not only on the type of



sensors and actuators but also on their precise coupling to
the physical world. Discovering these redundancies requires
learning (and adapting, as necessary, via passive observation
and active probing) a model of how a distributed and dynamic
set of sensors and actuators couple to each other through
the physical world. For example, seismic sensing may be
used when smoke or other phenomena render visual tracking
unreliable, or when connection is lost with the camera due to
a wireless jamming attack.

Adapting computing and communication resources: In IoBT
environments, there will be significant dynamics. Groups of
devices will be composed dynamically, and may need edge
or backend processing or storage. Critical data from IoBT
device groups will also be highly dynamic – depending on
where interesting events are being seen, there will be a need
to dynamically (re)allocate computing and network resources
to meet time and capacity constraints [14]. Adversaries in
IoBT environments could potentially inject data or noise to
saturate processing resources, starve communication, or iso-
late information sources. Resource allocation algorithms will
be needed that can (i) dynamically reallocate heterogeneous
resources at the edge, network core, and backend to handle
rapidly changing situations in connectivity and needs, (ii)
scale resource allocations to match workloads that exhibit high
spatial and temporal variability, and (iii) prevent any subset
of IoBT devices (including attackers) from saturating cloud
processing and communication resources.

Adapting actuation and control resources: An important as-
pect of heterogeneity is diversity in how tasks are accom-
plished. In fact, diversity is well documented as a way
to improve the performance of human workgroups. Stud-
ies have shown repeatedly that diverse groups outperform
homogeneous groups [15]–[18]. Thus, instead brittle con-
trollers designed with fixed assumptions, one may design novel
controllers that are parameterized differently but adapt their
parameterization by observing their neighbors, so that the
system self-adjusts to the environment.

V. CHALLENGE 3: LEARNING AND INTELLIGENT
BATTLEFIELD SERVICES

Complementing the discovery and composition of heteroge-
neous goal-driven IoBTs and endowing them with reflex-
like adaptation functionality, this challenge is concerned with
supporting the learning capabilities of IoBTs. Such support
functions may include reliable information gathering in ad-
versarial settings, large-scale distributed processing, and an-
alytic services for fast and efficient machine intelligence in
distributed and adversarial settings, as shown in Figure 4.
Numerous fundamental challenges must be addressed within
this context to overcome existing gaps and limitations, as
follows:

• Theories and algorithms to ensure trustworthiness of data
gathered in adversarial environments, prior to its input to
fusion engines, learning systems, and decision support
tools.

• Theories and algorithms for distributed learning and ana-
lytics over heterogeneous data in the presence of network
adversities and adversarial compromise.

• Theories and algorithms for improving learning safety,
robustness, and cost.

These challenges are further elaborated below.

A. State Assessment and Diagnostics

A useful service would be to develop mathematically well-
founded algorithms for assessment of state and quality of
data inputs to fusion engines, learning systems, and decision-
support tools, especially in the presence of possible lack of
trust in data sources or sensors. This leads to multiple research
problems of a diagnostic nature, as discussed below.

System diagnostics: A key challenge in the complex envi-
ronments of IoBTs is to diagnose distributed system health.
This problem is especially daunting given the possible lack of
observability of many system components. Health, therefore,
needs to be inferred (and damage, if any, assessed) without
direct component observation. In communication networks,
this problem is sometimes known as network tomography [19];
discovery of latent network structure (or structural compro-
mise) from a sample of end-to-end observations [20]–[22].
IoBTs feature significantly increased heterogeneity, compared
to traditional networks, as well as a faster pace and scale of
dynamics (compared to the more stable Internet topology). The
higher prevalence of adversarial elements in contested environ-
ments also adds to the challenge. New diagnostic algorithms
are needed that support heterogeneous IoBT graphs, address
scalability, distribution, streaming, and high rate of topological
dynamics, while operating in a harsh adversarial environment.

Information diagnostics: A different problem is the identifi-
cation of bad (human or physical) sources, erroneous sensor
signals (due either to malicious activities or to faults), as
well as automatically explaining causes of anomalous be-
havior [23]. This work may leverage prior advances in data
fusion, truth-finding, and reputation algorithms, among other
possible frameworks. The topic offers interesting challenges.
On the one hand, in fast-paced situations that involve many
simultaneously moving parts, attention is a bottleneck. It
should be directed to situations that deserve it the most. For
example, it should be directed more to anomalies as opposed
to normal conditions. On the other hand, in the presence
of failures and noisy data, anomalous inputs might be the
result of noise or misinformation. Therefore, focusing on them
would be a distraction. How does one develop services that
properly direct attention to situations/information that demand
it the most, even in the presence of noise, failures, bad data,
malicious adversarial inputs, and other possibly intentionally-
designed distractions?

B. Learning Services

A key challenge is to develop a theory and algorithms for
learning that are more suitable for the distributed, adversarial
IoBT environments. Several questions arise in this context. For



Fig. 4. Intelligent Battlefield Services

example: (i) how to automatically distribute machine learning
computations over heterogeneous networks of sensing and
compute nodes subject to loss of network connectivity; (ii)
how to make distributed learning continuous and never-ending
to handle the needs of ever-changing battlefield environments,
and (iii) how to make distributed learning resilient to adversar-
ial compromise and network adversities? We elaborate below.

Distributed learning: The current state of the art in distributed
machine learning-based data analytics assumes that models
and algorithms are run over secure, reliable networks and that
all required features are available all the time. Another signifi-
cant limitation of current distributed machine learning systems
is that they are only marginally tolerant of heterogeneous hard-
ware configurations. Data-parallel implementations of machine
learning algorithms perform the same computation over all
compute nodes by definition [24], [25]. This precludes the
use of truly heterogeneous networks of nodes from wearables
to compute clusters whose storage, memory, and compute
capabilities may differ by many orders of magnitude. In the
context of IoBTs, new theories and algorithms are needed that
accommodate heterogeneity, and tolerate a wide array of fail-
ures and adversarial compromises of learning nodes. Indeed,
a study is needed into the resilience of distributed learning to
adversarial change. For example, what is the impact of time-
varying topology (such as that caused by failures due to an
adversary) on the correctness and convergence of distributed
learning algorithms? Resilient learning algorithms need to
be developed for intelligent battlefield services executed on
IoBTs.

Continuous and robust learning: In systems that learn blindly
without proper contextualization, new information can often
erase previously learned knowledge [26]. Informally speaking,
“appropriate behavior” must be contextualized. One must learn
what is proper for each context. Importantly, the system must
learn the different relevant underlying contexts automatically.
Adverarial attacks may supply malicious inputs (i.e., inputs
modified to yield erroneous model outputs) [27]. In an IoBT

environment, an adversary may control red/gray nodes and
observe (hence, label) our digital and physical reactions to
inputs of its choice. The continuous scale at which learning
happens in an IoBT environment makes it susceptible to fine-
grained modifications of inputs. Formal methods are required
to verify the correctness of systems that include machine
learning components in the presence of adversarial training
data.

Optimizing cost of learning: In a dynamic IoBT, especially
where communication is short and significant network dy-
namics and heterogeneity are present, the cost of network
learning could be non-negligible. One would need to explicitly
account for the cost of deploying and using the network. In
recent work, information theoretic results were developed for
networks where the cost of learning is explicitly accounted
for, demonstrating that one might activate different network
topologies based on the trade-off between network learning
and communication [28]–[33]. This work may inform design
of dynamic IoBTs that self-configure to jointly optimize both
learning cost and decision making accuracy.

Ensuring learning safety: A long-term goal is to develop
formal verification technology for supporting development of
high-assurance adaptive and self-aware learning systems. This
is difficult due to the very large set of reachable states in
learning systems, easily going beyond the limits of current
verification technology, as well as the presence of feedback
loops that break compositionality properties, making reasoning
about safety of the overall behavior very challenging. Since
traditional approaches are inadequate for dealing with the
complexities of learning systems, novel methodologies are
needed that might rely on runtime monitoring, certificate-
based verification, and combining data-driven and symbolic
techniques. A particularly promising approach here is based
on simulation-driven verification and runtime monitoring of
suitable properties of the system [34]. Preliminary results
also exist on extending symbolic reasoning engines that have



had significant impact on techniques in Formal Methods, to
establish safety bounds on data-driven learned models [35].

VI. DISCUSSION

The challenges discussed above set the stage for a new
era of battlefield IoT services that simultaneously increase
automation and improve quality of response in unexpected
military scenarios, thereby reducing both the human and eco-
nomic toll of military operations. A key cross-cutting theme
that underlies many of the discussed challenges is the tussle
between dependability, autonomy, and learning.

For example, the work requires reconciliation of the ability
to offer assurances (e.g., via formal methods) with the ability
to autonomously learn [36]. One must be able to verify
composable, intelligent, adaptive, and learning systems. A
significant research problem is to develop abstractions and al-
gorithms to model, verify, and synthesize systems that incorpo-
rate machine learning (such as deep neural networks) in safety-
critical and mission-critical perception and decision-making
tasks. Recent work [37] describes challenges for applying
formal methods to obtain verified, high-dependability learning
systems. They include modeling a system whose structure
might change and that operates in an unknown environment,
generating training and testing data so as to obtain guarantees,
and formulating correct-by-construction methods for designing
learning systems with provable behavior. Initial encouraging
results have been obtained for verifying autonomous vehicle
designs that have perception components based on deep neural
networks [34], a result that is possible to build upon.

Another cross-cutting challenge is to understand how the
freedom (or burden) of initiative can be properly apportioned
among humans and other battlefield “things” to most effec-
tively attain mission goals and most judiciously manage risk.
Allowing for initiative, lower in the command chain, is an
act of delegation of the authority of decision-making. More
autonomy implies less predictability of aggregate behavior
which may reduce what can be guaranteed. How is that trade-
off affected by other key performance requirements such as
scalability, heterogeneity, and responsiveness? It may be that
to attain high responsiveness and agility, or to scale to larger
system sizes, more decisions need to be local, which favors
autonomy, but may under some conditions impair dependabil-
ity. Can systems therefore adapt the balance depending on re-
quirements, such as acceptable response time and scale? What
optimality results can be derived regarding the aforementioned
trade-off and how to develop systems that are near optimal?

Needless to say, security research has a paramount role in an
IoBT context. The most likely result of interconnecting battle-
field entities into a big network is an increased attack surface.
Novel solutions are needed to mitigate this vulnerability.

Finally, as with many other examples, where some auton-
omy is delegated to “things”, ethical and legal implications
must be addressed. Autopilots, cruise control, and collision
avoidance systems are examples of today’s technologies that
remove humans from the decision and control loop. What are
their counterparts in an IoBT context? How do they impact

liability and ethics? Importantly, what decisions must remain
with humans? One prime example of a human decision in
a military context is the decision to fire a weapon. While we
expect a human decision-maker to remain in charge of that de-
cision in the foreseeable future, smart or learning systems can,
nevertheless, improve safety of weapon use, making it more
consistent with user intent. For example, smarter ammunition
used in disaster response might be authorized to impact only a
specific category of things (e.g., condemned buildings, such as
those damaged by an earthquake). Demolition charges may use
(or communicate with) sensors and computational elements to
withhold from activation where humans are present, thereby
reducing unintended loss of life. These and other possibilities
open up when envisioning smarter connected battlefield tech-
nologies. The current IoBT project is a basic research effort
that addresses the enabling intellectual foundations. Study of
specific applications is deferred to future research.

VII. CONCLUSIONS

The research directions discussed above will enable a new
paradigm for connecting and managing IoBT assets in army
operations to meet commander’s intent. In this paradigm, the
system is self-aware and possesses the intelligence needed
to discover and characterize new components, assemble de-
sired mission-relevant composite assets, adapt to perturbations,
recover from attacks, probe adversarial systems, monitor its
own state, detect anomalies, and continuously learn from
its own experiences. It aids military operations in multiple
ways. First, it reduces the need for physical presence of
humans in dangerous environments by improving autonomy,
resilience, and survivability of assets in the field, while of-
fering assurances on behavior. Second, the research endows
mission-centric systems with adaptation reflexes to regroup
and reconfigure independently, as needed to meet mission
goals in response to unexpected conditions, without increasing
the cognitive burden on the human operator. For example,
the IoBT may independently switch to a different sensing
modality in order to meet information needs of a commander
upon unexpected resource losses or adverse weather conditions
that render previously used modalities ineffective. Third, it
explicitly supports learning over time, thereby improving with
experience. The authors expect these advances to dramatically
reduce the cost of conflicts and improve safety and efficacy of
mission execution.
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