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ABSTRACT

The era of big data has resulted in the development and applications of technologies and
methods aimed at effectively using massive amounts of data to support decision-making and
knowledge discovery activities. In this paper, the five Vs of big data, volume, velocity, variety,
veracity, and value, are reviewed, as well as new technologies, including NoSQL databases that
have emerged to accommodate the needs of big data initiatives. The role of conceptual modeling
for big data is then analyzed and suggestions made for effective conceptual modeling efforts with
respect to big data.

1. Introduction

Big data is widely recognized as referring to the very large amounts of data, both structured and unstructured, that organizations
are now capable of capturing and attempting to analyze in a meaningful way so that data-driven decision analysis and actionable
insights can be obtained. Doing so has required the development of techniques and methods for analysis, new ways to structure data,
and interesting applications in science and in management (e.g., [14,5,1]). Although the value of big data has sometimes been
challenged, the big data landscape continues to grow [22].

The objective of this paper is to examine the progression of big data in an effort to: identify the challenges that exist; and specify
the role that conceptual modeling can play in advancing work in this important area. The next section defines and describes big data
and its recognized, inherent characteristics. Then, new and emerging big data technologies are presented before analyzing the
specific role that conceptual modeling can play in understanding and advancing research and applications of big data.

2. Big Data

The volume of data has grown exponentially over the past decade, to the point where the management of the data asset by
traditional means is no longer possible [26]. As shown in Fig. 1, big data trends have been enabled by advances in computing
technologies, which facilitated the sudden explosion of data from various sources such as the Web, social media, and sensors. The
flood of data brought about the emergence of a data-driven paradigm to take advantage of the newly available computing
technologies. Big data technologies materialized the data-driven paradigm, making it increasingly sophisticated and useful.

Big data refers to the high volume, velocity, and variety of information assets that demand new, innovative forms of processing
for enhanced decision making, business insights, and process optimization [18]. As a relatively new concept, the basic notion of big
data includes the techniques and technologies required to manage very large quantities of data. In addition to the technologies,
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Fig. 1. Factors leading to Big Data.

skilled professionals are needed with analysis and design skills to appropriately manage this resource [2,16].

Mayer-Schonberger and Cukier [21] argue that big data will change the way people live, work, and think, although it requires that
many obstacles be overcome. The data must be obtained, processed, and effectively used, raising related issues on how big data will
be represented and modelled. Understanding the challenges associated with big data representation and modeling, though, first
requires an understanding of the characteristics of big data.

2.1. The Vs of big data

Big data, as traditionally characterized by the “3Vs” of volume, variety, and velocity, have emerged from advances in sensing,
measuring, and social computing technologies (Gartner.com). In addition to these Vs, veracity (accuracy) and, especially, value, are
important. Each of the Vs has its own unique challenges. The volume is too big, the variety requires both structured and unstructured
analysis, and the velocity is so fast that we might not even have time to identify reasonable questions to ask [8]. The veracity leads to
uncertainty, and the volume competes with velocity [27]. It is the value, however, that is the most time-consuming to extract, and
difficult to ascertain. Fig. 2 summarizes the “5 V” challenges dominant in big data practice and research efforts.

Volume: The large volume of data has resulted in data availability coming from diverse, often location-dependent, data streams
containing various kinds of data that are being generated at a very high velocity from huge banks of physical, digital, and human
sensors [10]. The data sources include wearable technologies, cloud-based service (e.g., Amazon web services), enterprise data
warehouses (EDW), and NoSQL databases [40]. The scale is now terabytes, petabytes, and exabytes. The volume challenge is being

Large volume, cloud, HDFS,

e = s EDW, NoSQL
Quality, reliability, uncertainty, -
a nine in itself Scale: terabytes , petabytes,

" exabytes
'e.g., word variation, weather 2 " i
fia?a, translation of hand- {ivng Con ity hardware,

t ’ Distributed storage (HDFS,
written data) => SW solution Volume => Technology s?zsllutl{on )

: 4 Speed to
—— create/capture/process/

/store
Processing mode: Real-

Verac a l u e Velocity qu time; streaming;

in-memory computing
' Actionable knowledge, ROI, / -

y
A 4

=> Semi-Technology
Relevancy to customers, and

solution
business value | Different data types and sources (e.g.,

q

Analysis: SQL queries, machine relations, documents, web, XML files,

learning, data mining, statistics, graphs, multimedia, 107, dark data,

visualization, optimization, open Ma, external data) -=.>data

decision analysis => SW solution integration/ETL/ELT/Data Virtualization
=> SW solution

Fig. 2. The 5 Vs of Big Data.
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addressed, technologically, by using commodity hardware and the Hadoop Distributed File System (HDFS).

Velocity: The velocity is the speed to create, capture, extract, process, and store data. A semi-technology solution is needed to deal
with the velocity challenge, with the software solution portion having real-time processing, streaming and in-memory computing.

Variety: Different data types and sources provide relations (from relational databases), documents, Web data, XML files, sensor
data, multimedia files, and so forth. The variety challenge is primarily addressed by software solutions because the integration of
heterogeneous data requires an extensive software effort to handle the variety.

Veracity: The veracity refers to the imprecision of the data. It raises issues of quality, reliability, uncertainty, incompleteness, and
the meaning in the data itself (e.g., word variation, weather data, translation of hand-written data). Eventually, though, the veracity
must be consistent in order to be processed in an automated manner. The veracity challenge should be addressed by software
solutions.

Value: The value of big data can be difficult to ascertain. Reasonable measures focus on: identifying “actionable” knowledge;
computing, if possible, a return on investment (ROI); identifying relevancy to customers (as evidenced by much research on text
mining and sentiment analysis); and other measures. The needed analysis of big data to identify such value may occur in various
ways including: traditional SQL-type queries, machine learning techniques, data mining, statistics, optimization, and decision
support analysis. The results may be represented in different forms, including traditional, standard and ad hoc report generation,
and visualization. The value challenge is most difficult to achieve as its software solutions must be addressed within the context of the
business or problem domain. Furthermore, available and qualified data scientists who can make sense of big data with a proper
understanding of the domain and who are comfortable using analytical tools are not easy to find.

The extension to 7 Vs incorporates validity and volatility [13]. Applicable, additional Vs include visualization, variability,
vulnerability, visibility, vagueness and, no doubt, others, all of which must be managed. However, “understanding” and dealing with
the semantics of the data remains a big challenge [31,32,36].

2.2. Infrastructure to manage big data

To accommodate big data initiatives, firms have been building an infrastructure to manage it, treating big data as a corporate
asset. The infrastructure requires having the correct tools in place and, generally, consists of the following components [12]:

® Data stack: consists of structured, as well as unstructured, data.

® Big data ecosystem: consists of search and visualization, data orchestration, and data access. Professional services for big data
include the hardware, such as the computer, storage and networks. Specific database-related services are SQL-based systems,
NoSQL systems, and Hadoop and its ecosystems.

® Enterprise information management: focuses on issues related to data governance, data integration, data quality, data
visualization, and master data management.

® Data Science platforms and tools: have a variety of tools for pattern extraction and visualization of results. These include:
machine learning algorithms; predictive analytics [7]; prescription techniques (e.g., simulation with alternative variables and
subsets of data); descriptive techniques (e.g., statistics and assessment techniques for historical reporting); and reports (e.g.,
represented by scorecards or dashboards).

2.3. Data-driven paradigm

The data-driven paradigm [21] has implications for analysis and decision making. The important differences between traditional
data management and this newer paradigm are summarized as follows.

Whole data set sampling. The entire set of data can be used in analysis, instead of sampling. Lin et al. [19] refer to this as
sampling with a size of ‘N’ motivated, in part, by falling costs of data collection and analysis, and leading to collecting as much data as
possible [15].

Accept the probably of prediction. As illustrated in the movie Moneyball, data analysis uses statistics to understand, for example,
the sport of baseball, in a manner not previously considered. (http://blog.minitab.com/blog/the-statistics-game/moneyball-shows-
the-power-of-statistics).

Big data outperforms experts. The computer system, DeepBlue [11], defeated a world chess champion based on techniques
developed in artificial intelligence. Amazon reviews (Amazon.com), as contributed by web citizens, have illustrated their value over
experts’ recommendations.

Accept correlation. The identification of causality may not always be possible. Recommender systems, such as those used by
Amazon, identify items that people are likely to purchase together. However, they do not identify the reason why this is so.

Datafication. This trend is to convert many unusual aspects of social life into computerized data that can be analyzed [21]. The
key idea is to digitize the behaviors or thoughts of human, society, and machines to develop new applications.

Quantify/measure as many granular data as possible. Granular data refers to the level of detail in which the data is stored (e.g.,
low level of detail to higher summarized data). With big data technologies, the more granular data has greater potential for extracting
business value and increasing the possibility of being reused in multiple applications.

Data speaking. Let the data speak for itself. This reflects the movement of value from physical items to brands, ideas, and
intellectual rights.
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Fig. 3. Data Management Evolution.

2.4. Growth and Challenges

Advances in storage, networks, CPU, and bandwidth are remarkable. The storage costs ($ per terabyte), for example, have
decreased from $14,000,000 (1980) to approximately $50. The number of nodes a company might have has risen from 1(1969) to 1
billion hosts. The cost per GFLOPS is the cost for a set of hardware that would, theoretically, operate at one billion floating-point
operations per second. The CPU ($ per GFLOPS) costs have plummeted from $1,100,000,000 (1961) to $0.08. Bandwidth ($per
Mbps) that was approximately $1200 in 1998, now costs approximately $5.

The sudden explosion of data from automated capture, sensors, and other sources, which led to the data-driven paradigm, has
been embraced for real-time decision making, as well as other, data-intensive, activities. The size of the world big data market
(hardware, software, and services) has been estimated to grow to over $50 billion [44]. Big data is driven, fundamentally, by
advances in computing technologies with faster, cheaper, and more powerful processing capabilities due to Moore’s law and other,
alternative ways to progress computing capabilities.

There are many challenges associated with big data [37], including the difficulty of humans to comprehend its scale. The volume
is too big and the velocity too fast [8]. The variety and veracity of data are more challenging in developing software solutions. Value is
most intriguing, and realized by the opportunities big data provides for innovative solutions to problems. Furthermore, the impact
on society and business is substantial.

3. New database technologies for big data

Database technologies have emerged that are specifically designed and employed for big data. Fig. 3 shows the timeline during
which milestones related to the development of big data techniques have occurred. Starting in the 1970s, the relational database
management approach [6] was introduced. In the 1980s, it started to become a reliable and efficient structured approach to
managing data. In a relational model, data is represented as tuples in tables, called relations. Efforts were made to understand how
to translate conceptual models to relational models (e.g., [38,35]). As the volume of data being stored in a database increased,
notions associated with “very large” databases emerged, as recognized by the Very Large Database conferences and journal. These
very large databases (in the range of terabytes) required a different storage model due to: (1) the tremendous overhead in the
relational model (although less of a consideration today); and (2) different retrieval and usage demands. The simple retrieval of a
personal record of a customer, John Doe, for example, was not enough. Instead, a single result was desired for all those who viewed
catalog listings for something similar to "men's socks."

By the early 1990s, a terabyte of data was considered to be a large amount of data, in response to the desire and need to capture
more and more data. Consequently, different types of relational data management tools and systems continued to dominate the
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market (e.g., Oracle, IBM DB 2, Microsoft SQL Server). During the first decade of this century, systems were developed that were less
reliant on the relational database structure, deviating to keys, columns, documents, graphs, in memory management, and other
techniques. Hadoop, for example, is an open source framework for handling unstructured data using a parallel-processing technique
called MapReduce, originally developed by Google. Further development included a series of NoSQL and NewSQL databases. Most
of these new breeds of databases support scalability and performance, using the scale-out architecture.

3.1. What’s wrong with traditional RDBMSs?

Traditional relational database management systems (RDMS) are simply not capable of handling big data. The data is too big, too
fast, and too diverse to store and manipulate. Relational databases require a schema before writing to the database, which is too rigid
to manipulate volumes of real-time data with diverse data structures. The ACID properties (atomicity, consistency, isolation, and
durability) are too strict for some applications. The RDBMS clusters are SPOF (Single Point of Failure) and expensive, and have
impedance mismatch (aggregate versus atomic data). This all led to requirements for new architectures and new transaction
management such as BASE (Basically Available, Soft state, Eventual consistency), which relaxes the ACID properties in distributed
data management systems. BASE is common in NoSQL systems.

3.2. Hadoop

Map/Reduce is a programming framework with automatic parallelization. The Map part applies to the input data. It emits
reduction keys and values with the output sorted and partitioned for the Reduce aspect. The Reduce function is applied to data
grouped by the reduction key. The reduce function “reduces” data in the sense that it can aggregate data by adding selected values.
The Map and Reduce can be chained together for complex computations. The result is extreme scalability, well-suited for scale-out
architecture that uses low cost commodity hardware with fault-tolerate features. Hadoop can process and store large amounts of
structured, unstructured and semi-structured data.

Hadoop (hadoop.apache.org) is an open source version of the Map/Reduce algorithm, which was created to analyze large
amounts of unstructured data and has become a de facto standard in big data analytics. In traditional database use, a query is written
in a structured query language, the data is accessed as stored in a relational database, and the result obtained. These types of queries,
however, can be limited, so the desired output may not be obtained. Using Hadoop, unstructured data can be combined in many
ways to facilitate data mining for useful patterns. Hadoop 1.0 is a single-use system for batch applications; Hadoop 2.0 is a multi-use
data platform supporting batch, interactive, streaming, and graph-data applications. The Hadoop ecosystem progresses from data
storage, data processing, and data access, to data management as defined below.

Data storage — HDFS (Hadoop distributed file system) and HBase (column database storage).

Data processing — MapReduce (automatic parallel data processing).

Data access — Hive (SQL-like), Pig (data flow), Mahout (machine learning), Avro (data serialization and remote procedure
protocol), Sqoop (relational database management connector).

Management — Oozie (workflow), Chukwa (monitoring), Flume (monitoring), and ZooKeeper (management).

Hadoop is inherently scalable and good for processing a large amount of data with automatic load balancing. Hadoop, however, is
too dependent on HDFS when multiple iterations are needed and still requires significant manual coding to implement complex
operations such as joins based on multipole fields. These limitations have brought a new memory-resident parallel processing
framework, called Spark.

3.2.1. Apache spark

Apache Spark is an in-memory centric computing platform, designed specifically for large scale analytical processing (http://
spark.apache.org/). It is a fast and general engine with a simple and expressive programming model for supporting a wide range of
applications, including ETL (Extract, Transform, Load), machine learning, stream processing, and graph computation. Apache Spark
is 100 times faster than Hadoop MapReduce in memory, or 10 times faster on disk. Spark has an advanced DAG (Directed Acyclic
Graph) execution engine that supports cyclic data flow and in-memory computing [30]. Eighty high-level operators make it easy to
build parallel applications, with interactive use from the Scala, Python and R shells. It combines SQL, streaming, and complex
analytics. Spark has a stack of libraries that can be combined in a single application, and include SQL and DataFrames, MLIib for
machine learning, GraphX, and Spark Streaming.

Spark can access diverse data sources such as HDFS (Hadoop Distributed File Sharing), Cassandra (column based database),
HBase (Hadoop’s database), Hive, and Tachyon. It uses Resilient Distributed Datasets (RDDs), which are fault-tolerant distributed
memory abstractions that avoid replication. Spark can interactively query 1 to 2 terabytes of data in less than one second.

Whereas Hadoop is good for batch applications, Spark is good for running real-time or iterative applications such as machine
learning or graph processing and is easier to program than Hadoop.

3.3. NOSQL and NewSQL databases
NoSQL databases are “Not Only SQL” to indicate that SQL can also be used even though they represent the data management
systems invented to manage non-relational data. They are in the forms of key-value stores, column stores, document stores, and

graph databases. NoSQL databases [25,29] have fewer consistency restrictions than conventional relational databases. They provide
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Table 1
Comparison of SQL, NoSQL, and NewSQL Database.

0Old SQL NoSQL NewSQL

Relational Yes No Yes

SQL Yes No Yes

Column stores No Yes Yes

Scale Limited Yes (Horizontally) Yes (Horizontally)
Eventually consistent Yes

BASE (Basically Available, Soft state and Eventually consistent) No Yes No

Handles large (big) volumes of data No Yes Yes

Schema-less No Yes No

specific data models for specific applications. These NoSQL systems use eventual consistency based on the CAP (consistency,
availability, partition) theorem, which means that each system supports either high availability of the data or consistency when data
are partitioned in a network.

NewSQL [34] is a class of new breed databases that have the strengths of both relational and NoSQL databases. Thus, they
support SQL and the ACID properties, and are built on the scale-out architecture, supporting scalability and fault tolerance. Thus,
NewSQL databases provide a scalable performance comparable to NoSQL systems for OLTP workloads. They have limited support
for “variety” due to the need of a schema (e.g,: Google spanner, VoltDB, MemSQL, NuoDB, Clustrix). Table 1 compares standard
SQL, NoSQL and NewSQL.

3.3.1. In-memory computing

In-memory computing has all data in RAM rather than on disk. so there is no disk buffer. In-memory databases (IMDBs) are
ACID-compliant relational databases, offering SQL. Durability is supported by snapshots, transaction logging, and other features.
For an In-Memory Database, the RDBMS stores data in memory with SQL support. The In-Memory Data Grid (IMDG) has several
characteristics. It stores data in the RAM of servers distributed over a cluster. There is greater ability to scale-out than with IMDB,
but less sophisticated SQL support. It has limited distributed SQL querying and indexing capabilities. The IMDG uses a key/value
data structure that provides simple but fast retrieval as well as flexibility for application developers.

3.3.2. Hybrid cloud computing

Cloud computing, as defined by the National Institute of Standards and Technology, is: “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics, three service models, and four deployment models” ([23],
p-3). Its main characteristics are: on-demand self-service; broad network access; resource pooling; rapid elasticity; and measured
services. Service models are Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). The
four deployment models are: Private, Community, Public, and Hybrid.

With respect to Infrastructure as a Service, the applications, data, runtime, middleware, and operating system are managed by
the customer, with the vendor taking responsibility for networking, storage, servers, and virtualization. With Platform as a Service,
the customer manages the applications and data only, whereas for Software as a Service, the vendor takes full responsibility for
managing all of the above functions.

The hybrid cloud approach is widely adopted for managing big data. Hybrid cloud computing stores private, sensitive, and critical
data in an on-premise server, and sharable data in a public cloud, making it valuable for dynamic or highly changeable workloads.
This approach is shown in Fig. 4. The intended advantage of the hybrid cloud is to enable workloads to move between private and
public clouds as organization’s computing requirements change, thus providing businesses with greater flexibility and more data
management options.

The Integration Platform as a Service (iPaas) is a suite of services. It connects cloud-based processes, services, applications and
data between or across multiple organizations and is intended to support the development, execution, and governance of integration
flows (gartner.com). It acts as a hybrid integration platform where different business units can connect to enterprise, and other
services; customers and suppliers can be connected; and seamless integration with the Internet of Things, social media, and mobile
devices, can all occur.

Hybrid
Cloud

... Bridge ...

Fig. 4. Hybrid Cloud Combines Private and Public.
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Cloud computing is a strategy that provides worry-free maintenance, rapid scalability, and incremental cost based on the usage
for organizations. However, utilizing cloud computing requires good data governance, high quality metadata, and well-understood
data integration processes.

3.3.3. Trend: ETL versus ELT

In the traditional ETL (Extract, Transform, and Load), the transformation is performed in the pre-processing stage before data is
loaded into the server. With big data, where a large amount of data is rapidly generated, ELT (Extract, Load, and Transform), the
transformation takes place in the target database after the data is loaded first. Data Virtualization enables data to stay in one place
and not be transformed. Instead, data is transformed at run time when data is needed. Data virtualization provides a layer of
software abstraction on the top of multiple data sources, without having to move the data from one place to another. This technology
allows the creation of virtual data marts or real-time data integration platforms for analytics. The results impact data warehousing in
that enterprise data warehouses can now incorporate data from: traditional relational databases, big data clusters, and real time
stores. The data are used for a variety of applications including traditional OLAP (online analytic processing) and dashboards, as well
as machine learning and parameterized ad hoc reporting.

3.4. Summary of big data technologies

Big data technologies are very complex and need to evolve in order to address issues associated with the Web, mobile, social
media, cloud computing, and big data analytics. Hadoop ecosystems may evolve, but are still good for large sequential batch
processing. Spark is becoming dominant and effective for interactive, real-time, parallel processing. NoSQL systems need a standard
query language and discipline for modeling. In-memory computing is widely used in NoSQL and NewSQL, and is useful for analytics.
Hadoop and enterprise data warehouses co-exist, with enterprise data warehouses evolving into an integrated data management
platform. The use of cloud computing has increased, but hybrid cloud integration and security issues remain as important issues to
be addressed. Big data continues to be the driving force for many applications, including the Internet of Things and other
applications such as smart health and smart cities.

4. NoSQL databases

NoSQL refers to open-sourced, distributed, and non-relational databases. Horizontal-scaling enables scalability and fault
tolerance. It is schemaless, allowing new data type to be dynamically added to the database, increasing write-performance. Most
NoSQL systems adopt BASE (Basically Available, Soft state, Eventual consistency), as opposed to ACID (properties, atomicity,
consistency, isolation, and durability), for transaction management to increase availability and performance rather than strict
consistency.

NoSQL was specifically designed to address the needs of big data, big users, and cloud computing. It supports unstructured or
non-relational data types (nested structure, column families, document, JSON (JavaScript Object Notation), BSON (binary
serialization of JSON), and graph). NoSQL exhibits several other important characteristics. It is schema-less (schema-on-read,
implicit schema). It can scale out massively at low cost and with fast retrieval (elastic scaling), providing low cost operational
management for a large number of users. It supports scalability, high performance, and fault-tolerance, and is designed for real-
time, non-uniform big data.

Activities important for dealing with big data issues include: scalability, schema flexibility, ease of development, cost, and
availability of deployment options [9]. The shift from relational databases to NoSQL Databases is spurred as well by the need for
flexibility both in the scaling model and the data model. In terms of scaling, in relational databases, scaling up is accomplished by
adding a bigger server when additional capacity is needed. In NoSQL, scale out means that, instead of acquiring a bigger server, one
can add more commodity servers.

4.1. NoSQL database modeling

From a data modeling perspective, NoSQL is schemaless, has no join operation, and handles redundancy by embedding and
linking. These characteristics facilitate the ease of application development by simplifying the mapping between the memory
structure and the database structure. A relational database has a “schema-on-write,” whereas NoSQL has “schema-on-read.” NoSQL
has a dynamic column family with column names defined at the time of data insertion, and an implicit schema, defined after coding.
Fig. 5 shows an example of a dynamic column family in HBase, where the “rowkey” represents the identifier of employee data.

Dynamic Column Generation is shown in Fig. 6. Fig. 7 summarizes the comparison.

From a data modeling perspective, several major differences emerge. With respect to impedance mismatch, the relational
database has a normalized atomic data. NoSQL has non-relational data to handle the variety of the 5Vs and a denormalized
structure. The aggregate is the unit of operation and consistency. NoSQL does not support the join operation or foreign keys, as
relational databases do. Rather, joins are performed in applications. As a result, most searching is performed against a single table,
which must include all of the related data.

NoSQL databases manage redundancy control by embedding and linking. Embedding involves denormalizing 1:N and M:N
relationships and collapsing subclass entities into superclass entities. It is efficient for retrieval and convenient for consistency
control. Linking (referencing) involves adding a key to the object and is good when the referenced objects are static and the
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Employee Emp Data
RowkKey empiD | [empiD|name. | [gender | city
CF: emp_data |name 100 Obama M DC
gender | 500  smith F NY
city

Hbase: CREATE ‘employee’, ‘emp_data’

Hbase: put ‘employee’, ‘100’, ‘emp_data:name’, ‘Obama’
Hbase: put ‘employee’, ‘100’, ‘emp_data:gender’, ‘M’
Hbase: put ‘employee’, ‘100, ‘emp_data:city’, ‘DC’

Hbase: put ‘employee’, 200’, ‘emp_data:name’, ‘Smith’
Hbase: put ‘employee’, ‘100’, /, emp_data:gender’, ‘F’
Hbase: put ‘employee’, ‘100’, ‘emp_data:city’, ‘NY’

Fig. 5. Dynamic column family in HBase.

relationships do not change as found, for example, between publisher and book.

Most NoSQL databases lack full ACID compliance for guaranteeing transactional integrity and data consistency. Many NoSQL
databases do not guarantee consistency, by design, because many applications need to handle potential inconsistencies. Eventual
consistency limits the use of NoSQL databases for mission-critical transactional applications. There are many variations, however,
even within the same category of NoSQL systems.

4.2. Types of NoSQL databases

There are four main types of NoSQL databases, each with different levels of scalability, flexibility, complexity, and functionality
(academy.datastax.com).

4.2.1. Key-value Store

Key-Value Store databases store data in a schema-less way, with all of the data consisting of an indexed key and a value (e.g.,
Oracle NoSQL and Redis [28]). A simple hash table can only be accessed by Key to retrieve Value. Value can be any type of data
(“aggregates”) in any size, and treated as a blob. Some models provide indexes on values. Designed to handle massive load, the goal
is to provide a very fast access using the Key, much faster than using SQL.

Both Key and Value can be a complex compound object. This is good for data that is only accessed through a single key and where

Dynamic Column Generation

Employee Emp Data
RowKey empiD | [emplD | name | gender  city|
CF: emp_data |name 100 Obama M DC
gender 200 Hillary F NY Next
city President of
Us

We can add a new column to selected employee without affecting other
rows or without creating NULL value to other employees.

Hbase: put ‘employee’, ‘200’, ‘emp_data:priority’, ‘Next President of US’

Fig. 6. Dynamic column generation.
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} }
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Coding

Fig. 7. Comparison from current relational databases to current NoSQL to future NoSQL (CM=Conceptual Model; LM=Logical Model; PM=Physical Model).

multiple records do not need to be related. To read the components of postings, we need to parse all of the objects. The advantages
are that it has very fast random access via Key, is scalable, easy to distribute across clusters, and provides a simple model as a hash
table. The disadvantages are that there is no complex filtering query, the join needs to be performed in the applications, and there is
no mechanism for supporting multi-record consistency.

4.2.2. Column store

A Column Store (also known as wide-column stores) database was motivated by Google’s BigTable. Instead of storing data in
rows, data tables are stored as sections of columns of data. It is an extension of Key-Value Store database where columns can have a
complex structure, rather than a blob value. A Column Store database supports complex modeling structures (nested tables,
repeating groups, set, list, etc.). A column family (called Super Family in Cassandra [17]) is a group of related columns, guaranteed
to maintain consistency. Column Store have high performance and a highly scalable architecture.

The key structure of a typical column store consists of {row_key, column family name, column qualifier name, timestamp}. A
timestamp supports versioning; by default, the most recent value is retrieved. Thus, rapid temporal analysis of a column value is
possible. A row key can be a composite key, but is stored as a single key.

Modeling Aspects of Column Store Databases: Column stores support rich modeling structures (columns, composite columns,
denormalized structures, nested tables, aggregates, secondary indexes, map, set, and list). The data is stored so that all of the data
can be accessed together. Denormalization is common, but it brings redundancy and consistency problems.

One should consider query refinement first, and then design the physical structure for query performance. Developers often

Posting
Category 'p K  postinglD Tag
,P:-; categoryName H—O9 title PO—O9 tagName
categoryDesc postingDate
—————O09 contents
L
= |
|
User g
- Commment
,v useriD
PK
HcerName ' commentiD
T commentSeq
S EEE— commentDate
comment

Fig. 8. Entity-relationship model for a NoSQL Column Store Database.
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Query requirements: [ e ]

l Category 4 sostingD
- For each category, show all the P cmommee o-of e
postings. i o
PostingPerCategory
RowKey categoryName
- Embedding: Embed the
CF: postingData | | Nested Posting posting data in
postingID Category table
title - Use column family
postingDate - Use nested structure

contents

Fig. 9. 1:N Relationship with Embedding for Query 1.

create one aggregate table per query requirement. There are multiple ways in which to model a given query requirement. As shown
below, the entity-relationship diagrams can greatly help the design of NoSQL column store databases. Consider the example in
Fig. 8. The question is “What NoSQL Schema options do we have in this entity-relationship diagram?”.

For thel:N relationship between Category and Posting, two reasonable query requirements could be:

Query 1: For each category, show all of the postings.

Query 2: Display the postings with their categories.

Fig. 9 shows the relationship between Category and Posting. The query “for each category, show all the postings” is handled by
embedding the posting data in Category, using the column family and nesting.

A linking solution is shown in Fig. 10.

The second query, “display posting with its category” is shown in Fig. 11. The category data is embedded within the posting table
with denormalization.

If we keep both tables, maintaining consistency between two tables is critical. NoSQL could end up having many more
denormalized tables when trying to satisfy all of the query requirements as shown in Fig. 12.

For the M:N relationship between Posting and Tag, there are two query requirements: for each tag, show all the related postings;
and show the tags of each posting. There are several different ways to model this to facilitate the query requirements. If there is an
attribute of the M:N relationship, the NoSQL model could also be further changed.

Several important implications arise. For each access path, one needs to create an aggregate table whose row key begins with the
attribute used in searching. For 1:N relationships, a denormalized structure is commonly used. In M:N relationships, there are
multiple ways of creating aggregates: entity-focused, relationship-focused, one-way access, two-way accesses, reverse-timestamp,
etc. If an aggregate has a transitive dependency within the aggregate, then a Column family can be used inside the aggregate. If a
subaggregate is a repeating group, a nested structure can be used. The most important fact is that entity-relationship diagrams are
still useful for designing a NoSQL schema.

Query requirements: cegery |9 '«w
- For each category, show all the P cnmomane oo e
postingS. CategoryDest t-:::.'::m
Linking (referencing): Use
PostingsPerCategory reference to minimize
RowKey categoryName redundancy
Columns {postinglD} - Use a column representing
a set of postinglDs
- Not a NoSQL style

Fig. 10. 1:N Relationship with Linking for Query 1.
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Posting
Query requirements: Category ‘ [[gpe—
- Display postings with its categories e

categoryOesc portgDate

RowKey | postinglD

- Embed the Category
Columns | title data in Posting table
postingDate with denormalization
contents - Use columns
categoryName
categoryDesc

Fig. 11. 1:N Relationship with Embedding for Query 2.

Column stores supports diverse modeling structures and have schema flexibility (dynamic schema). However, the design is
dependent on access paths. There is data redundancy in multiple tables, which requires careful integrity management at the coding
level. The number of tables in a Column Store could be much larger than that in a relational database, when trying to satisfy all of the
query requirements. Data integrity maintenance is at the coding level. No complex query processing is available in most column
stores.

4.2.3. Document store

A document store is a collection of key-value stores where the value is a document, such as JSON, BSON, etc. Each document has
a unique key which is assigned to retrieve the document. Any collection of data can be stored such as nested structures, maps,
collections, and scalar values, There can be secondary indexes to access a component of a document. Document stores are found in
MongoDB, CouchDB, and others.

From a modeling perspective, document stores are good for semi-structured data. A document store supports aggregates and
denormalized structures. All 1:1 and 1:N relationships can be embedded in a single document. Referencing static relationships, such
as that found between a book and a publisher, is also possible. The rich modeling structures (nested structure, variable array) of
document stores are more powerful than column stores, and good for sparsely populated data sets. However, there is a lack of
standardization for modeling structures and a query language.

4.2.4. Graph database
Graph databases are based upon graph theory (set of nodes, edges, and properties) and useful for inter-connected relationship

PostingWithCategory PostingPerCategory
RowKey | postingID RowKey | categoryName
Columns | title Nest_ed
postingDate CF: Posting
contents postingData | | postingiD
categoryName title
categoryDesc postingDate
contents
{ Posting ‘
’ Category } P posteeo - If we keep both tables, maintaining consistency
P ategname e between two tables is critical
cotegonyexc postiegDate - NoSQL could end up having many more number
conbants of denormalized tables, when trying to satisfy

all the query requirements

Fig. 12. Redundant representations for a 1:N Relationship for Query 1 and Query 2.
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Fig. 13. Entity-relationship model for GIBIR.

data such as communication patterns, social networks, and biographical interactions. They allow one to ask deeper, more complex,
questions and express queries as traversals. It is difficult, however, to distribute components of a graph among a network of servers
as graphs become larger. It may more accurately be described as non-relational, not really NoSQL. Examples are Neo4j, Titan, and
OrientDB.

As an example, the Graph-based Interactive Bibliographic Information Retrieval System (GIBIR) was developed to deal
effectively with papers, authors, citations, affiliation, sources, terms, etc. by Zhu et al. [46]. GIBIR is implemented in Neo4j, a highly
scalable, open source graph database that supports ACID. Graphs are stored in disks in a custom binary format. The entity-
relationship model [4] for GIBIR is shown in Fig. 13, illustrating the usefulness of a conceptual model representation for a graph
database.

The corresponding graph schema of Fig. 13 is shown in Fig. 14, representing typical bibliographic entities and relationships.

Performance: With respect to performance, the graph model-based system outperforms the relational model-based system in
retrieving bibliographic information because the graph system traverses instead of making joins. The relational database performed
better in executing queries with only two nodes. However, as queries became complex, the graph database outperformed the
relational one.

Conceptual Modeling: An entity-relationship diagram is readily translated into a Property Graph Model, making a conceptual
model for graph databases necessary. It helps to understand which entities can be logically connected to which other entities. Graph
databases support only binary relationships. Graph modeling is much easier than for a relational data model because real world
objects are explicit in terms of connections.

Assessment: The graph database is good for applications with complex relationships. It is faster than relational models when
multi-nodes are involved. However, the Graph databases are not cluster-friendly. Big graphs may not fit into memory on a single
node. Graph partitioning causes many problems. Inter-node communications / messaging are critical. Currently, there are no
standard APIs or query languages for graph databases.

T IS_AFFILIATED WITH r—
uthor > ation

WRITES

PUBLISHES
CITES

Source

Term

Fig. 14. The property graph of GIBIR.
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4.3. Problems and use cases of NoSQL databases

NoSQL is not good for OLTP (online transaction processing) that requires ACID properties and frequent updates. Eventual
consistency is acceptable in some applications where performance is more important than consistency. Examples include search
engines that need to quickly display different search results or recommender systems that could display different review results.
NoSQL products, however, are rapidly evolving. Some systems, such as FoundationDB and OrientDB, claim they support ACID.

The impact of NoSQL databases can be appreciated by their many use cases. Mobile applications, Internet of Things, and real-
time big data analytics use Key-Value, column store and document store databases. Multi-sourced structured and unstructured
document management systems use document stores. Personalization, content management systems, eLearning, and catalog
systems use column store and document store databases. Patient health and prescription management systems use Key-Value
databases, as do real-time gaming. Massive marketing services which strive to capture a holistic view of customers use column
stores. Data management from social networks uses graph databases. Graph databases are also employed for master data
management and version management systems, and complex relationship management in drugs.

5. Conceptual modeling and big data management

Conceptual modeling has, since its beginning, focused on the organization of data [4,8,24]. It requires the construction of a
conceptual representation of the application domain of an information system [41,43]. For big data, the importance of conceptual
modeling can be considered from both technical and management perspectives.

Conceptual modeling is intended to describe the semantics of software applications. Conceptual modelers describe structural
models, behavior or functional models, as well as interactions and user interfaces. Such models enable clients and analysts to
understand one another, thereby facilitating useful communication among them (www. conceptualmodeling.org). Conceptual
modeling is useful in abstracting and decomposing complex concepts and can assist in understanding, managing, architecting, and
teaching database technologies. Techniques for conceptual modeling must address issues related to handling data integration, big
data warehousing, cloud, metadata, and curation. Embley and Liddle [8] argue that big data, as well as regular data, requires careful
modeling to ensure its appropriate use as representative of the real world. Scientists and designers trained in conceptual modeling
must be “talented thinkers” in the sense that they are capable of abstracting, representing, extracting, managing, analyzing, and
visualizing results.

Although conceptual modeling is useful for modeling big data, conceptual modelers, still, must overcome a number of challenges
to ensure successful big data projects:

o Understand/utilize/apply life cycles — understand traditional life cycles for regular databases, as well as big data life cycles that
address the big data challenges.

e Identify big data requirements and connect business goals and technologies — the volume of big data is extremely large, so
conceptual modelers must be able to identify the requirements that address the business goals and to select the right big data
technologies for the problem and requirements at hand.

® [dentify use cases, build architect, and select platforms — these can be helpful in the creation of appropriate platforms.

® Lead big data projects — conceptual modelers could play the roles of the Chief Data Office (CDO) who is responsible for the
management of big data projects.

® Perform high-level analysis — before embarking on a detailed big data analytics project, conceptual modelers should be able to
perform a high level analysis to understand the return-on-investment of the analytics project.

® Fuvaluate big data projects — as any data management project, big data projects must be evaluated for their feasibility, usefulness,
and quality.

® Help manage the veracity of big data — continued recognition is needed of the usefulness of the veracity characteristic of big data.

® Domain analysis, governance and Master Data Management — generic activities associated with traditional, as well as big data,
projects, must be managed.

These activities collectively help derive the success of big data projects. Conceptual modeling, in general, contributes to the 5Vs of
big data as follows.

® Volume: a physical characteristic, but conceptual modeling can organize, identify and describe important data and metadata.

Velocity: data must be filtered, but conceptual modeling can help to extract important data.

® Variety: conceptual modeling can model the variety, hierarchies, and networks of data, integrate the data, and address the
resulting big data warehousing issues.

e Veracity: conceptual modeling can check for quality, completeness, and consistency.

® Value: conceptual models can manage big data projects, including analyzing them to extract value and evaluate the results.

Thus, conceptual modeling can play an important role in big data initiatives.
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5.1. Challenges

There are many challenges and problems associated with big data project management, the most notable of which are described
below.

Data-driven culture: The data must be considered objectively, without relying on intuition. This is evident from the successful
supply-chain management of companies such as Apple, Google, and Wal-mart.

Business goals: Tie the project to the goals of the business. Ensure that the big data project matches well with the needs of the
business application.

Recruit proven analytical talent: Acquire the needed analytical talent. Innovations, as identified by such talent, can come from
performing diagnostics, predictive, and prescriptive analytics.

Understand big data solutions: Solutions can involve Hadoop ecosystems, Spark, NoSQL, cloud, in-memory computing, and
data virtualization.

Security: As with regular data management projects, data security is always a major challenge.

Leadership: Leadership is required throughout an entire data analytic life cycle.

5.2. Data analytics lifecycle

The cross-industry standard process for data mining, CRISP-DM [3] consists of several components. Business understanding
includes comprehending what questions need to be solved and what metrics are appropriate for the evaluation. Data understanding
requires the identification of the appropriate data resources and tools needed. Data preparation involves acquiring the data,
cleaning and transforming the data, and verifying the data quality. Model planning identifies the methods, techniques, and
workflows. Key variables are selected and the correlations between them identified. Evaluation consists of evaluating the results
against metrics and communicating the results. Finally, deployment is the integration of analytics procedures into management
dashboards and operating systems.

A data analytics life cycle is proposed in Fig. 15 [33]. It proceeds from business strategy to questions, data acquisition, solution
generation, evaluation, and monitoring.

The Chief Data Officer (CDO) has emerged as someone responsible for managing the data assert for purposes of governance and
innovation. The Chief Data Officer must be able to provide vision and strategy for data management initiatives, and carry out other
duties as shown in Fig. 16 [33]. These duties cover activities from conceptual analysis to deployment, which highlights the
importance of acquiring conceptual modeling knowledge.

6. Discussion

Big data problems are also problems in computer science. Addressing them requires, first, the creation of a business case for the
need for big data analytics. The data must be examined to identify which data must be merged and combined from multiple data

What is the question to solve and

Monitor performance; Busi metrics to evaluate? Generate
Identify parts that need to be l!ndemn hypothesis; Assess resources (people,
p?mprwed ndhg data, tools).

decision on tools

8. Review and 2. Data Identify data resources; data reuse
Monitoring Understanding & integration plan, datatification,

Integrate analytics k Acquire data; Perform
procedures into 7. Deployment & 3. Data Prep data profiling,,

management dashboards

. cleanse, and
and operational systems. transform,; Explore
data and verify
quality
Perform evaluation against
metrics; 6. Evaluation 4. Model
Communicate results and : "."
recommendations
5. Model Determine the methods, techniques,
WW and workflow?
Build models Select key variables and determine
Perform analysis and iterate correlation between them

Fig. 15. Data Analytics Life Cycle.
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Fig. 17. Big Data Management Initiatives.

sources. The desired output data must be assessed to identify how to compute the desired results. The results obtained must then be
interpreted and evaluated in an attempt to find new aspects in knowledge discovery. The abstraction of these big data management
issues is illustrated in Fig. 17.

Big data technologies are complex and evolving. They are needed to address many issues related to web, mobile, social, cloud,
and big data analytics, as these continue to mature. Hadoop ecosystems are also evolving. However, despite the hype, Hadoop has
had a rather slow acceptance rate. Spark, however, is rapidly dominating real-time parallel processing. NoSQL systems require
standard query languages and discipline for modeling. In-memory computing is widely used in NoSQL, with NewSQL useful for
analytics. Although Hadoop and enterprise data warehouses (EDW) currently co-exist, enterprise data warehouses are evolving into
an integrated data management platform. Emerging social and technology developments continue to drive big data such as the
Internet of things (IoT) [45], and wide-scale adoption of personal and professional user-generated content on social media, and
other outlets, that can be used for sentiment and additional forms of analysis. For NoSQL databases, specific technical research
issues include: design patterns, two phase commit, visualization, partitioning of graphs using data mining and conceptual modeling
in graph databases, and standard query languages.

From a management perspective, the big data life cycle management must concentrate on the 5Vs. Research questions include:
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How can one (semi)-automatically capture meta-data within the context of big data life cycles (acquisition, transfer, collection,
distribution, integration, preparation, analysis, visualization, governance, migration, maintenance, curation)? What are the essential
minimum metadata sets needed to support big data life cycle management? How should one label, manage, track, and apply
metadata to real-world projects? What are the best practices for doing so?

There are many ongoing, and interesting real-world research projects that are based on effective use of big data. Among them are
topics related to smart cities, smart health, smart aging, and cognitive computing. Some of the systems being built to support these
are difficult to program, making adoption slow. Others have more quickly become adopted (e.g. using mobile apps).

Leading advances in healthcare include, for example, using Watson (https://www.ibm.com/watson/health/) for patient care.
Smart aging mitigates the effect of aging for the elderly by using medical, computer, and communication technologies. The results
are opportunities for healthy aging. Using diverse wearable technologies and various sensors for monitoring patient activities and
elderly wellness could generate large amounts of diverse lifelog data such as video streams, images, audio, and text data. They
include notions from the data-driven paradigm which “nudges” people towards healthy choices such as: early detection of declining
good habits (e.g., nutrition, sleeping, keeping active); early intervention to suggest healthier alternatives; and incorporation of
preferences in insurances, treatments, social services, and activities. Conceptual modeling could play significant roles in modeling,
annotating, integrating, and extracting relevant data and metadata for analytics and curation.

Projects involving big data can have a large impact on project management requirements, especially given their potential to
influence operations in management and society by, for example, dealing with larger data sets than in the past, and acting upon
novel data analysis results or pattern extraction results. In the world of big data, conceptual modeling activities are useful and valid.
Big data requirements need to be identified, understood, and represented. NoSQL database modeling differs from traditional
relational database modeling, requiring modelers to understand both big data concepts and design architectures.

Conceptual modeling efforts are needed to understand concepts related to big data, as well as to create a design architect. The Vs
of big data provide a useful way to consider specific implications for conceptual modeling. With respect to work on variety, veracity,
and value, conceptual modeling has distinctive roles to play. To deal with the variety of data, NoSQL, design patterns, methodologies,
and tools are needed. The veracity of data results in the need to solve data and system quality issues. Quality management is
challenging, but crucial. For the value to be realized, the correct architectures and solutions must be modeled that can generate
actionable knowledge to improve business processes. There are also long-standing problems related to data quality [42] and
semantics [32,39].

As the focus on both technical tools and skills are developed for handling big data, equally important are the modeling techniques
to represent how big data might be used and the management capabilities required to extract value from big data. Many
opportunities are emerging, so conceptual modelers can expand their scope. To empower conceptual modelers for data analytics,
they might become citizen data scientist (e.g., [20]), engage in a management role as a Chief Data Officer (to identify business
opportunities and datafication) or as a Big Data Architect (to select platforms, design architectures, and technologies).

NoSQL DBs are still in an early phase of maturation. For them to become accepted and popular, good methodologies and tools
are needed for design, integrity, and consistency. Standard query languages are also required. Relational databases will, no doubt,
continue to be used for transaction-based systems. NoSQL and relational systems will co-exist. NoSQL is finding wide-spread use in
conjunction with search engines; web-based systems; real-time, cloud, and mobile applications; low-cost initial engagement; the
Internet of Things; and others.

7. Conclusion

Big data has the potential to make large impacts on business and society, some of which are already being realized. This paper has
reviewed recent developments in big data technologies and discussed challenges of big data, presented in terms of five “Vs” along
with potential approaches to addressing them, recognizing that the value of big data is the most difficult to attain. From reviewing big
data technologies, potential conceptual modeling contributions were identified for how they can support efforts and opportunities for
innovative solutions to complex problems.

Finally, it is important to teach big data technologies to the next generation of computer scientists, conceptual modelers, and
management information systems professionals (database administrators, systems analysts, etc.) [33]. Big data technologies need to
be understood, including software and hardware approaches to dealing with big data, as well as approaches to big data analytics
using sophisticated and automated tools. Collaboration of the efforts of researchers in the areas of conceptual modeling and database
management and development are required to address the magnitude of issues that arise as big data, the Internet of Things, and
many other interesting, and timely, applications evolve.
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